
 © 2015, IJCSE All Rights Reserved 158

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Review Paper Volume-3, Issue-5 E-ISSN: 2347-2693

A Thorough Investigation of Code Obfuscation Techniques for

Software Protection
Krishan Kumar

1
, Prabhpreet Kaur

2

1*,2

Department of Computer Science, Guru Nanak Dev University, INDIA

 www.ijcseonline.org

Received: Apr/22/2015 Revised: May/01//2015 Accepted: May/20/2015 Published: May/30/ 2015

Abstract: The Process of reverse engineering allows attackers to understand the behavior of software and extract the

proprietary algorithms and key data structures (e.g. cryptographic keys) from it. Code obfuscation is the technique is

employed to protect the software from the risk of reverse engineering i.e. to protect software against analysis and unwanted

modification. Program obfuscation makes code harder to analyze. In this paper we survey the literature on code obfuscation.

we have analyze the different obfuscation techniques in relation to protection of intellectual property. At the last, we are

purposing suggestion to provide protection from both the static and dynamic attacks.

Keywords— Code Obfuscation, Software Protection, Reverse engineering

 1. Introduction
In the last decade, code of the software is distributed in an

architecturally-neutral format which has increased the
ability to reverse engineer source code from the

executables. This activity has greatly concerned by the
software companies who has desire to protect the

intellectual property of their products. As there are lots of

copyright laws which forbid the direct piracy of software,

most of the developers are worried by possible theft of

proprietary data structure and algorithms design. Though

there are several methods for protecting software, such as
encryption, server-side execution and native code,

obfuscation has been found to be the cheapest and easiest
solution to this problem [1]. So main target of code

obfuscation is to protect the sensitive information such as

data structure and algorithms of a software from getting
disclosed to the outer world and only technique which is

available in digital market to get the sensitive information’s

about the proprietary or intellectual properties from the

executable revere engineering. Code obfuscation is the only

technique that can prevent reverse engineering to some
extent to analyze the target software.

Code obfuscation is the practice of making code
unintelligible, or at very least, hard to understand. The
process of code obfuscation involves transforming the code

of application to the code which is difficult to understand
by changing the physical appearance of the code, while

preserving the black-box specification of the program.

Obfuscation, by being the transformation of the program,
can be understood as the special case of data coding. The

further analysis shows, that there are a lot of similarities
between obfuscation and cryptography, but still these two

techniques cannot treated as equivalent. In this paper we

have surveyed the different obfuscation techniques [2].
Code obfuscation not only used by developers to

protect intellectual property, it is also used extensively by

malware writers to avoid detection. Many viruses utilize
obfuscation techniques to subvert virus scanners by continually
changing their code signature with obfuscating
transformations.

 2. Code Obfuscation

Code obfuscation technique is to obscure the control, data,
layout, design of the software original implementation and
give a semantically same but new implementation.
There is no common formal definition for code obfuscation. It
is basically transformation method to convert one program into
another, which posses the same characteristics of the old
program. It can also be treated as an executables that contain
encrypted sections, and a simple code section to decrypt the
encrypted code section. According to the authors of the paper

“A taxonomy of obfuscating transformations" [3], the
definition of code obfuscation is as follows:

Definition: Let T(P) be a transformed program of program P.
Then T is the Obfuscating Technique if T(P) poses the same
observable characteristics as P and T(P) must follows the
following conditions:
If program P does not terminate or has an erroneous
termination, then T(P) may or may not terminate. Else as P
terminates successfully, T(P) must terminate with the same
outcome as P.

According to the authors of the paper "A security
architecture for survivability mechanisms" [4], if T is
obfuscating technique that transform the program P into the
obfuscated binary B, then the reverse transformation from B to
P will take much greater effort and time(almost impossible),as
T is a one way translator.

2.1 Classification of code obfuscation
Obfuscation is classified into four types [3] based on

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(158-164) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 159

obfuscation target - Layout obfuscation, Data obfuscation,
Control obfuscation and Preventive transformation.

2.1.1. Layout Obfuscation: It refers to obscuring of the
software layout by deleting comments for instance,
changing format of the source code, variables
renaming, and the removal debugging information through
obscuring the lexical structure of the program.

2.1.2 Data Obfuscation: This prevents the extraction of

information from data. Data obfuscation techniques are

array splitting, variable splitting, changing the scope and

lifetime of data etc.

2.1.3 Control Obfuscation: it refers to the obscuring of
the control flow of the program. This kind of obfuscation
technique mainly of dynamic obfuscation type based on
self modifying code.

2.1.4.Preventive Transformation: Depending on
debuggers' or disassemblers' weaknesses, modify the
program such that code itself will force the debugger or
disassembler to fail.

But this classification does not include all types of
obfuscation techniques. Another possible classification is
Design Obfuscation [5] which deals with obscuring the
design related information’s of the software. Like merging
and splitting of code sections or classes, type hiding, will
help in obscuring the design intend of the programs.
3. Different evaluation criteria’s to measure the
effectiveness of Code Obfuscation
The three sets of Criteria (A-1, A-2, A-3) are described in
the subsections below and another method called empirical
is also described.

3.1 A-1: Potency, Resilience, Cost(Analytical Methods)
Analytical method checks the quality of the obfuscating
technique T() depending upon the parameters of both
original/source program P and the obfuscated program
T(P). According to authors of the paper "A taxonomy of
obfuscating transformation" [21], they are evaluating the
quality depending upon three parameters - potency,
resilience and cost.
Potency: It can be described as - how much obscurity T()
adds to P. Let Pot(P) is the potency measurement of P and
Pot(T(P)) is the potency measurement of T(P) then
Transformation Potency,

TPot=Pot(T(P))/Pot(P)–1 (3.1)
Cost: It is measure by how much computational overhead
T() adds to T(P). It is the execution time penalty and space
penalty that the obfuscation technique incurs on T(P). If
executing T(P).
requires exponentially more resources than P then
Transformation Cost;

TCost = Dear (3.2)

if executing T(P) requires O(n
p
), p>1, more resources than P

then Transformation Cost;

TCost = Costly (3.3)
If executing T(P) requires O(n), more resources than P
then Transformation Cost;

TCost = Cheap (3.4)
If executing T(P) requires O(1), more resources than P
then Transformation Cost;

 TCost = Free (3.5)

Resilience: It is measured by how difficult is T(P) to break for
a deobfuscator means how well a T() holds up under attack
from a automatic deobfuscator. Resilience can be measured by
summing the total of programmer's effort and deobfuscator's
efforts [3].

Programmer Effort (PEff) - The amount of time require by
the programmer to build the automatic deobfuscator to
regenerate P from T(P).

Deobfuscator Effort (DeoEff) - The amount of execution
time and space required for the automated deobfuscator to
deobfuscate the transformed program.
If P cannot be constructed from T(P), means some information
from P is removed in T(P) at the time of
obfuscation, then Transformation Resilience;

TRes = One Way (3.6)
Otherwise

TRes = Res (PEff + DeoEff) (3.7)

3.2 A-2: Resistance to Static and Dynamic Attacks
Madou and et. al [20] describe static and dynamic attacks
carried out on software. Static attacks are based on static
information and it is obtained by examining and analyzing
program without executing it. Dynamic attacks are solely

based on dynamic information. It is obtained by executing
program and observing execution traces. They measure
effectiveness of code obfuscation based on resistance of
obfuscated code to static and dynamic attacks. Sebastian and

others [21] also describe effectiveness of code obfuscation
based on resistance to static and dynamic reverse engineering
attacks.

3.3 A-3: Increase in Program Static Space
Chow and et. al in [22] describe obfuscation of control flow of
program by expanding state space of program.
This is achieved by embedding an instance “I” of hard
combinatorial problem “C” into code of program. It is

necessary to find the solution (“K”) to the instance (by static
analysis) which is needed to detect essential property “P” of

code. This obfuscation technique expands state space of

program (called dispatcher code) and this paper shows that it is
not possible to minimize its state space. Thus, if state space of

obfuscated program is larger than original program, reverse

engineering efforts by attacker are increased. Hence

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(158-164) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 160

Data Obfuscation

Storage & encoding Aggregation Ordering Layout Obfuscation

Split Change Merge Scalar Reorder

 Scramble

Variables encoding
 Instance Identifiers

 variables

 Change

Formatting

Promote Change Modify
Reorder

scalars to variables
Inheritance

methods

relations
 Remove

objects

lifetimes Comments

Convert Split, fold, Reorder

Static data
 merge, arrays arrays

to

procedure

Control obfuscation Preventive Transformation

Aggregation Ordering Computation Targeted Inherent

Reducible to

Explore weak-

Explore inherent

Inline

Non-reducible

nesses in

 problems with

Methods Reordering flow graphs current de- known de-

compilers and

 Statements obfuscation

Outline

de-obfuscators

Extend loop

techniques

Reorder

 condition

statements

 loops

Clone

Table

methods
Reorder

Unroll loop expression Interpretation

Figure 1: Classification of obfuscating transformation

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(158-164) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 161

such code obfuscation technique is better that technique
which does not increase state space of program.

Potency

Cost Resilience

Figure 2: Metrics for quality measurement of the
obfuscation technique

3.4 Empirical Method

The main target of code obfuscation is to protect the
proprietary code sections or algorithms from unauthorized
analysis and in reverse engineering the last step of analysis
is totally depends on human effort which cannot be
measured by any metrics. For this we need to perform
empirical research on a group of people like programmers,
hackers or crackers, students [9].
4. Literature Surveyed
In this section we have studied different obfuscation
techniques which appeared in literature and drawback of
each technique is also discussed.

Software protection through dynamic code
mutation – 2006

The researchers of this paper [11] implement a dynamic
code obfuscation technique that will remove some set of

code which will be restored at run time. To implement this
idea they are using three extra code module - stub, edit

script and edit engine. First thing they are doing is the

identification of basic blocks, then they are removing a set

of code from a basic block and put the restoring
informations in a edit script. Afterwards they include a

stub, which will have the address of the corresponding edit

script, at the beginning of that block and desperately put

some confusing erroneous code on place of removed set of

code. At the time of execution stub will be executed first
and transfer the control to edit engine with the address of

corresponding edit script. Then according to edit script the

edit engine will restore the original set of code at position
of the erroneous set of code. This method is implemented

in two ways by the researchers of this paper. One is One-Pass

Mutation where each functions or basic blocks will have their

own edit script. Other one is Cluster-Based Mutation where a

group of similar functions will have a single edit script. The

major disadvantage of this technique is the stub section is

always be in highlight, that will draw attention of the attacker.

Other disadvantage is after restoring, the original code is fully

exposed to the debugger or attacker.

Binary obfuscation using signals - 2007
Here [12] the researchers also give a new technique of control

flow obfuscation by hiding the control flow information of a

program using signal, which are used carry information

between operating system and information. This research work

is based on the replacement of every control instruction at

binary level (eg. JMP,RET, CALL) with trap signals like

SIGILL forlegalinstruction, SIGSEGV for segmentation

violation and SIGFPE for floating point exception. It first

identify the control instruction, then divides the code-before

and code-after segment of the control instruction. After this the

control instruction is replaced with a trap instruction and some

bogus code is inserted between the trap instruction and the

code-after segment. Then the user defined signal handlers are

installed within the program with a special table that will

contains the actual instruction for corresponding generated

signals. At runtime when the trap signal will executed the

control will go to the operating system's corresponding signal

handlers, then the control will be transferred to user-defined

signal handler for the corresponding signal. Then the user-

define signal handler will execute the corresponding code and

then transfer the control to the code-after segment. The one

disadvantage of this technique is the control instruction is

available within the user-defined signal handler. If the attacker

can identify the signal handler, he can identify the control

instruction by analyzing the signal handler.

Mimimorphism: a new approach to binary code
obfuscation - 2010

In this paper [13] the authors give a totally different kind of

obfuscation technique based on mimic function that has three

phases - a digesting phase for Huffman tree building, an

encoding phase that use Huffman decoding technique and a

decoding phase that use Huffman encoding technique. Here the

mimimorphism technique use mimic function of higher order
which differ in digesting phase from regular mimic function by

building a collection of Huffman trees for better mimicry and a

mimimorphic engine, that include all the three phases, is added
to the obfuscated program to restore the original code at run

time. Here, in Digesting phase, from the executable with help
of an assembler for each assembly instruction with all the

parameters and the frequency of occurrence those parameters

are stored and all the instruction is also get stored with a

unique id and with the frequency of their occurrence, after this
a Huffman tree for each instruction is created depending on

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(158-164) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 162

their parameters frequency. At encoding phase this

technique use the Huffman decoding operation base on the

Huffman trees

generated earlier in digesting phase and output a

completely different assembly code that will convert into a

binary with the help of an assembler. At execution time of

the new binary code the mimimorphic engine apples its

decoding function on the binary, that use the Huffman

encoding operation, depending on the Huffman trees

generate earlier to restore the original program for

execution.

Here the binary code that will be distributed
can’t be reverse engineer statically but it includes the
mimimorphic engine, the decoder with the Huffman trees
with unobfuscated status. This may reveal the original code
with dynamic analysis and also encoding and decoding the
whole program is very time consuming when program size
will increase.
Mobile agent protection with self-modifying code –
2011
The paper [14] introduces a light weight but self-modifying
code based technique at binary level. The proposed

obfuscation technique of the this paper camouflaged the

control instructions with normal instructions or with other
control instructions. This method defines each control
instruction as a candidate block, the code section before the

candidate block is named as preceding block and the code

section afterwards is as succeeding block. At the time of
obfuscation this technique replace the control instruction
(for example JMP instruction) at the candidate block with
normal instruction (for example MOV instruction) and add

a modifying block to its preceding block and add a
restoring block to its succeeding block.

The modifying block performs some AND-
OR operations on the address of the candidate block to
restore the original instruction at run time. After execution
of the candidate block when control goes to the succeeding
block, then restoring block again perform some AND-OR
operations the address of the candidate block and restore
the camouflaged instruction again in the candidate block at
runtime.
The obfuscated code developed by this method will not be

too much bigger than the original one, as no extra code

section is add, instead 2-4 simple binary level code is

added to the original binary one. This kind of obfuscation

is very hard to be found by static reverse engineering and

make the analysis error prone. But the original is exposed

temporarily at the time of execution which can be detected

by dynamic reverse engineering with the help of any

debugger [18] and also the modifying and restoring block

can be identified by step-in execution(execute one

instruction at a time) within the debugger.

Branch obfuscation using code mobility and signal
– 2012
The research work [15] provides a obfuscation technique

where resilience [3] is one-way means the original program

cannot be reconstructed from the obfuscated one. On the basis

of the paper “Binary obfuscation using signals" [12] the

researchers of this paper build their work. They are also using

the trap instruction in place of the control instruction, that they

want to be obfuscated. In the same way of the base paper [12]

they removed the control instruction and put a trap instruction

with bogus codes afterwards. When the trap instruction will

execute depending on the generated signal control will transfer

to operating system, then to the corresponding installed user-

define signal handler. Here the signal handler will

communicate to a remote trusted server/machine by passing

the value of the actual condition variable to know the next

code section that will going to be executed next. On receiving

the value of the condition variable the server generate the

corresponding result and pass it to the signal handler, which

will then pass the control to the next executing block

depending on value of the result. Here they are not providing

the complete executable code to the customer. They are

removing some information from the provided binary one and

add server-side execution of the removed information, code

obfuscation technique is only used to hide the actual control

instruction form the attacker.

This a hybrid method of code obfuscation and server-side

execution. As some code is removed from the provided binary,

the original code can never be reconstructed from the binary

with the help of any kind of reverse engineering. But the

performance of this code totally depends upon the connectivity

of between the two machines. If the network bandwidth is too

low or there is no connectivity between the two machines, this

implementation is totally worthless.

Potent and stealthy control flow obfuscation by stack
based self-modifying code – 2013

Here [16] the researchers developed a stronger new

obfuscation technique based on the paper “Mobile agent
protection with self-modifying code" [14] described earlier. On

the previous paper they are just trying to hide the control

instruction but the address where the control will be transferred

is still available after camouflaged. Here the researchers have

shown a way to hide the address also as a local data to that

function, which will be stored on the stack section of data area.

In this research work the researchers take executable machine

code and then generate its corresponding assembly code. Then

they select the control instruction to be obfuscated. Lets take

they are going to obfuscate a JMP instruction(an assembly

instruction for unconditional jump with a address parameter).
So to store the address in the stack they are just extending the

size of stack that will always be allocated at the starting point

of the function. After this before obfuscating the instruction

they stored the jump address in the stack and then replaced the

JMP instruction with a normal instruction and add an extra

instruction in the modifying block after the deobfuscation
instructions to restore the address at run time and an extra

instruction to restoring block to remove the address at run

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(158-164) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 163

time, before the re-obfuscation instructions.

This method provide a code obfuscation mechanism that is
to hard to be analyzed by static reverse engineering as both
address and the instruction is not visible until the function
stores its stack onto the memory. This thing also make it
hard for dynamic reverse engineering. But in modern
debuggers [18] [17] [19] if we execute the obfuscated
binary with the step-in (execute one instruction at a time)
execution it will shows all possible values of every
registers and stack pointer, local and global variable values
used at that moment.

Dynamic Obfuscation Algorithm based on
Demand-Driven Symbolic Execution -2014
In this [22] author has presented a novel algorithm called

Demand-Driven Dynamic(DDD) Obfuscation by using the

demand driven theory of symbolic analysis. In this

algorithm, first large number of invalid paths are created

that mislead the result of symbolic analysis. Secondly,

according to this theory, a specific execution path is created

to protect the security of software. The DDD algorithm

proposed four important obfuscation concept: jump

node(jn),node summery, target driven and program

components. Main component of the algorithm is jump

node. Program execution path can be changed and

controlled by inserting jn and logic of jn. Each jn

correspond to a unique ID which is used to locate the node

summery information in the lookup table through hash

function and then to determine the relative position of the

jn in the execution tree.

In this algorithm the efficiency and performance
depends on jn. The position and number which jn added
need to consider efficiency and safety performance after
confusion. When number of jn is large, it may reduce the
program execution performance, so that the number and
density of jn need to be controlled.

An Obfuscation Method to Build a Fake Call Flow
Graph by Hooking Method Calls-2014

The researcher in the paper [23] proposes an obfuscation
method against the illegal analysis of program code. This

method tries to build a fake call flow graph with help of
debugging tools. The generated call flow graph shows
relations among methods, and helps in comprehension of a

program. The main concept is that call flow graph leads to
misunderstanding of the program. It is implemented though
hook mechanism of the method call from changing a callee.
The key idea of the proposed method is to change a callee
before runtime, then the actual callee is called by the hook
method at runtime. In the early stages of attack, the
adversaries try exposing that what kind of protection
mechanism is used. If the protection method is stealthy, the
attacks for the program become more hard task.

Here the researcher uses the invokedynamic instruction and
classes in java.lang.invoke, general java program rarely

used them. This is the place where attacker can easy identify
the method. The proposed method provides protection against
the static analysis but it fails against the dynamic analysis.

5. Conclusions
As the goal of code obfuscation is to protect the sensitive

information such as data structure and algorithms of software

from getting disclosed to the outer world and it can thwart

many attacks but with enough time and efforts above discussed

techniques can be overcome by reverse engineers. Researchers

have found many code obfuscation techniques but no

obfuscation technique has yet been found that can completely

resist reverse engineering. In addition to this drawback, code

obfuscation increases the code foot-print, decreases little bit

performance, and can hinder certain compiler optimizations.

When obfuscation techniques combined appropriately, can add

a layer of protection against illegal modifications, theft and

insertion of malicious code. The literature surveyed many

obfuscation techniques each having some limitations some

provide protection against static reverse engineering other

against dynamic reverse engineering. So there is need for

Hybrid obfuscation mechanism which provide protection from

both the static and dynamic reverse engineering. So our future

work will be about developing Hybrid mechanism for

obfuscation. Several software protection techniques available

in the literature are analyzed and examined. The characteristic

features of the existing algorithms are thoroughly investigated

in this paper. This study would facilitate in development of

efficient software protection techniques. Encryption techniques

can be incorporated with the existing software protection

techniques to improve the overall security of the software.

Code encryption schemes for protecting software against

various attacks like reverse engineering and modification.

Therefore, novel and efficient code encryption scheme have to

be established based on an indexed table to guarantee secure

key management and efficiency.
References

[1]Christian S. Collberg and Clark Thombor-son.

Watermarking, tamper-proofing, and obfuscation - tools
for software protection.In IEEE Transactions on Software
Engineering, volume 28, pages 735–746, August 2002.

[2] Shakya Sundar Das, Code Obfuscation using Code
Splitting with Self-modifying Code, Disseration National
Institute of Technology Rourkela -769 008, Odisha, India
May 2014.

[3] C. Collberg, C. Thomborson, and D. Low, “A taxonomy
of obfuscating transformations," tech. rep., Department of
Computer Science, The University of Auckland, New
Zealand, 1997.

[4] C. Wang, A security architecture for survivability
mechanisms. PhD thesis, University of Virginia, 2001.

[5] V. Balachandran and S. Emmanuel, “Potent and stealthy
control flow obfuscation by stack based self-modifying
code," Information Forensics and Security, IEEE
Transactions on, vol. 8, no. 4, pp. 669-681, 2013.

 International Journal of Computer Sciences and Engineering Vol.-3(5), PP(158-164) May 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 164

[6] M. H. Halstead, Elements of Software Science
(Operating and programming systems series). Elsevier
Science Inc., 1977.

[7] T. J. McCabe, “A complexity measure," Software

Engineering, IEEE Transactions on, no. 4, pp. 308-

320, 1976.
[8] W. A. Harrison and K. I. Magel, “A complexity

measure based on nesting level," ACM Sigplan
Notices, vol. 16, no. 3, pp. 63-74, 1981.

[9] G. Wroblewski, General Method of Program Code
Obfuscation (draft). PhD thesis, Citeseer, 2002.

[10] C. Wang, A security architecture for survivability
mechanisms. PhD thesis, University of Virginia, 2001

[11] M. Madou, B. Anckaert, P. Moseley, S. Debray, B. De

Sutter, and K. De Bosschere, “Software protection

through dynamic code mutation," in Information

Security Applications, pp. 194-206, Springer, 2006.

[12] I. V. Popov, S. K. Debray, and G. R. Andrews,
“Binary obfuscation using signals," in USENIX

Security Symposium, pp. 275-290, 2007
[13] Z. Wu, S. Gianvecchio, M. Xie, and H. Wang,

“Mimimorphism: a new approach to binary code

obfuscation," in Proceedings of the 17th ACM

conference on Computer and communications security,

pp. 536-546, ACM, 2010.
[14] L. Shan and S. Emmanuel, “Mobile agent protection

with self-modifying code," Journal of Signal
Processing Systems, vol. 65, no. 1, pp. 105-116,2011

[15] Z. Wang, C. Jia, M. Liu, and X. Yu, “Branch
obfuscation using code mobility and signal," in
Computer Software and Applications Conference
Workshops (COMPSACW), 2012 IEEE 36th Annual,
pp. 553-558, IEEE, 2012.

[16] V. Balachandran and S. Emmanuel, “Potent and
stealthy control ow obfuscation by stack based self-
modifying code," Information Forensics and Security,
IEEE Transactions on, vol. 8, no. 4, pp. 669-681, 2013.

[17]“Idapro debugger : Data rescue [Online]."
http://www.datarescue.com/. Last Accessed: 07-1-
2015

[18]“Immunity debugger [Online]."
 https://www.immunityinc.com/productsimmdbg.shtml. Last

Accessed: 07-1-2015.
[19] “Olly debugger [Online]." http://www.ollydbg.de”.

Last Accessed: 12-09-2013
[20] Matias Madou, Bertrand Anckaert, Bjorn De Sutter,

and De Bosschere Koen."Hybrid static-dynamic
attacks against software protection mechanisms", In
Proceedings of the 5th ACM Workshop on Digital
Rights Management. ACM, 2005

[21] Sebastian Schrittwieser and Stefan Katzenbeisser,

"Code Obfuscation against Static and Dynamic

Reverse Engineering", Vienna University of

Technology, Austria, Darmstadt University of

Technology, Germany.
[22] Chow, S., Gu, Y., Johnson, H., and Zakharov, V.A.:

"An Approach to the Obfuscation of Control-Flow of
Sequential Computer Programs", In the proceedings of 4th
International Conference on Information Security, LNCS
Volume 2200. Pages 144-155. Springer-Verlag. Malaga,
Spain. 2001.

[23]F.Kazumasa , T.Haruaki ” An Obfuscation Method to
Build a Fake Call Flow Graph by Hooking Method Calls”
Las Vegas, USA IEEE, SNPD 2014, June 30-July 2,
2014.

